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Abstract 

In this theory, both the advanced and retarded Lignard-Wiechert potentials are used to 
compute the fields of a charged point particle. The incoming radiation from the advanced 
fields balances the outgoing radiation of the retarded fields, and we assume that there are 
no radiation reaction terms in the equations of motion of the particles. We further assume 
that only retarded fields act on particles through the Lorentz force, and that advanced 
fields act on antiparticles. This is a theory that is symmetric under time reflection 
(reversal of the direction of motion plus charge conjugation). 

1. Introduction 

The most successful theory of  elementary particles is, to date, quantum 
electrodynamics.  The agreement between experimental  results and calculations 
is overwhelming in a number of  applications. Nevertheless, those calculations 
are carried out  within the framework of  quantum field theory  and perturbat ion 
expansion, where infinite renormalizations are necessary to avoid well-known 
problems. Thus, in spite of  its success, there still is considerable dofibt about 
the possibili ty o f  putt ing these calculations on a sound mathematical  basis. 

We have explored the alternative approach of  relativistic quantum mechanics 
(Marx, 1969, 1970a, 1970c), and we have been able to make considerable 
progress. We have used causal Green functions in a many-times formalism to 
allow for pair creation and annihilation, and conservation of  charge for particles 
in an external electromagnetic field leads to a probabilistic interpretat ion.  The 
number of  particles is constant ,  but  they can turn around in t ime; the formalism 
of  quantum field theory can then be used much in the manner of  non-relativ- 
istic many-particle theory (Marx, 1972). But we have had great difficulty in 
even writing down equations for interacting charged particles with a dynamical 
electromagnetic field, although we have explored a possible approach in non- 
relativistic quantum mechanics (Marx, 1974). One reason for this problem is 
that there is still considerable ambiguity in the interaction of  classical charged 
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particles with a classical electromagnetic field. The most satisfactory approach, 
as presented by Rohrlich (1965), is not very helpful in the context of quantum 
mechanics. Although the equations can be derived from an action principle, 
they do not lend themselves to a Hamiltonian formulation. The appearance of 
third derivatives with respect to time or proper time, the asymptotic conditions 
and preacceleration are bothersome'even within a classical context. Also the 
interaction of classical fields with the electromagnetic field is not free of 
questions of gauge invariance and Lorentz covariance, especially when boundary 
conditions are taken into account (Marx, t970b). 

We recently proposed (Marx, 1975a) a different way of looking at a particle 
with its Coulomb field, by integrating the stress-energy tensor over the future 
light cone. When the fields are referred to the vertex of the light cone, the 
integral of the tensor over a tube around the world line contains no third 
derivative term. We thus were led to an equation of motion without the 
Schott term, but consistency required a variable mass, that decreased as 
the rest energy fed the radiation. 

Here we present an alternative point of view (Marx, 1975b) that makes 
use of both advanced and retarded fields, particles and antiparticles in a 
time-symmetric way. The advanced Li~nard-Wiechert potentials represent 
incoming radiation fields that are absorbed by a particle at the same rate as 
it emits energy through the retarded fields. Thus, there is no need for a 
radiation reaction term due to local conservation of energy and momentum 
around the world line of a particle. We assume that only retarded fields act 
on particles, avoiding any causality problems in macroscopic electrodynamics, 
where radiation reaction does not play a significant role. Antiparticles are 
affected by advanced fields only, which makes this theory symmetric under 
time reflection. 

The main difficulties lie in the lack of a variational principle for the com- 
plete system, although a single-particle Lagrangian is readily available and, 
partly as a consequence, the lack of a global conservation law for particles 
and fields. 

The electromagnetic fields give rise to absorption and emission of radiation, 
which travels with the speed of light, but fields are of secondary importance 
for the interaction between particles, which is that of an action-at-a-distance 
theory. 

We use a time-favoring metric with a modified summation convention for 
repeated lower Greek indices. We use natural units so that e = 1, e 0 = 1, and 
go = 1. We generally follow the conventions in Marx (1975a) and other 
references. 

2. Energy and Momentum of  the Advanced Fields 

We first compute the stress.energy tensor for the advanced electromagnetic 
fields generated by a classical charged point particle. The world line of this 
particle is given by the parametric equations 

x .  = ~u(~') (2.1) 
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in terms of the proper time r. The advanced fields at a point x are given by 
the corresponding Li6nard-Wiechert potentials 

AAv ( x )  = e___ uu[r  A (x)] (2.2) 
4rr p 

where u u is the four-velocity, the advanced proper time rA is determined by 
the forward light cone from x where it intersects the world line, and the in- 
variant distance P is obtained from the null vector R by 

p = - R  .u (2.3) 

This advanced null vector is given by 

R ° (x )  = x ,  - ~u[rA (x)] (2.4) 

where r A is determined by 

R u ( x ) R u ( x  ) = O, R o ( X  ) < 0 (2.5) 

The spacelike unit four vector b(x )  normal to the world line at r A can be 
found from 

R = p(b - u)  (2.6) 

The fields and the stress-energy tensor are then computed in the usual manner. 
In terms of the quantities defined above and the four-acceleration wu,  the 
symmetrized stress-energy tensor is 

Our = -  (e2 /16rr2 04){ [ (1  -- pb " w) 2 + p 2 w 2 ] b v b  v + [pb " w -  p2(b • w)  2 

- -  p 2 w 2 ]  (buuv + bvuu)  - [1 - p2(b " w) 2 - p2w2 ] U#Uv 

-- p [wu(b p - Up) + wv(bla - Uu) ] +guy/2} (2.7) 

The sign of ®uv is such that the energy density ®oo is positive. 
We next compute the energy-momentum flux "across" the backward light 

cone. We choose the surface element so that there is continuity with the 
forward light cone (see Figure 1), and its equation is 

d o  v = p2 (u v - bu)dpdg2 (2.8) 
We integrate over the light cone outside a sphere of radius e, and we obtain 
the Coulomb energy-momentum 

Pu c = (e =/8rre)u u (2.9) 

The tube around the world line at a distance e measured along the backward 
light cone is not exactly the same as the corresponding one on the forward 
light cone. Its equation is 

x(r,  o, ~) = ~(r) + e[b(r, o, ¢) - u(r ) ]  (2 .10)  

and the corresponding surface element is 

d %  = e 2 [(1 - eb • w ) b ~  + eb • wuu]dg2dr  (2.11) 
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Figure 1 -Advanced and retarded light cones and segments of the corresponding tubes 
around the world line of a particle. 

Thus, we find 

®uvdov = - (eZ /167r2 e2) {eb " w ( -  1 + eb " w)u• + [ -  ½ + ~eb " w 

+ e2(b • w ) 2 ] b u  - e2w2(bu - us) + ewu}d f2dr  (2.12) 

and we integrate over the solid angle to obtain 
r2 

f®uvdov =(e2/47re) f d ' c ( - 1 2 w u - ~ e w 2 u u )  (2.13) 
1~ I 7-1 

The first term can be integrated and represents the change in the Coulomb 
energy, and the second one corresponds to incoming radiation. By the diverg- 
ence theorem, the same rate of radiation is obtained from the integral over 
2;", when this surface recedes to infinity. 

3. Antiparticles 

We have seen elsewhere (Marx, 1970a, 1970c) that antiparticles in relativ- 
istic quantum mechanics are represenetd by solutions of wave equations that 
propagate backwards in time. For free fields, they correspond to the negative- 
frequency part of the solution and we have to specify it at the final time when 
we use a causal Green function or Feynman propagator. 
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Consequently, in the classical theory we choose the parameter on the 
world line of an antiparticle so that the proper time decreases with increasing 
coordinate time; that is, the four-velocity is a unit tangent vector pointing 
in the direction of the pafft. Thus, the signs of the velocity terms have to be 
changed throughout. The four-acceleration, on the other hand, remains un- 
changed. 

If  a time reversal operation is performed on the coordinate system (or if 
an observer made out of antimatter moves along the time axis in the negative 
direction), the advanced fields of the antiparticle correspond to emission of 
radiation into its future, the normal observer's past. This radiation then 
appears the same way to the antimatter observer as the usual radiation 
emitted by particles appears to the observer. The advanced fields, on the other 
hand, appear as incoming radiation converging to the particle or antiparticle 
where it is absorbed. 

We can now define the energy-momentum vector either in the usual manner 
or with a change in sign. We set 

pu = - r n u  u (3.1) 

for antiparticles, which makes the energy positive as far as the observer is con- 
cerned. The sign of  the charge of an antiparticle is also to some extent arbitrary. 
Here we choose the charge with the opposite sign of the particle charge, although 
in relativistic quantum mechanics both particles and antiparticles are represented 
by the same field and only one charge appears. These ambiguities may disappear 
if a classical theory were to describe pair creation and annihilation, but we do 
not expect this to be the case. 

When we describe particles and antiparticles in this manner, we have symmetry 
under time reflection (Wigner's reversal of  the direction of motion plus charge 
conjugation). 

4. Particle Equat ions  o f  Mo t ion  

We have to look for an interaction between charged particles that does not 
contradict causality as found in macroscopic electromagnetic theory. This 
requirement is obviously satisfied when we assume that the Lorentz force act- 
ing on particles is due to the retarded field from all other particles. We further- 
more assume that there is no radiation reaction force, and the equation for 
particle i is 

R 
miwiu  = - eiFiuu [~i(';i)]uiv (7"i) (4.1) 

with no sum over i, and where the retarded field at the event ~i is obtained 
from the world lines of the other particles and antiparticles in the system. If 
the total number of world lines is N, we can write 

N 
FRu[~i(Ti)] = ~ '  R F[]u~ (4.2) 

j=l  
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where the prime indicates that the term ] = i is excluded from the sum, and 

R ej [ uj~Ri#, - uj~Rtj~ [ wj~R~j~ - w#a~ij~ 
= t % J " J ) 3  - [ 

- ~ L # R i j v - u j v R i j u ) R i j : w l - ' ] l ( R i j  . u j )  3 (4.3) 

Ri j  = ~i(ri) - ~j[rjR (ri)] (4.4) 

with no sum over i or ]. The proper time rR] at which ~], uj,  and w i are 
evaluated is determined by the intersection of the ]th world line and the back- 
ward light cone from ~i. This is then a retarded action-at-a-distance theory, 
and the fields serve only subsidiary rotes in the equation of motion for the 
particles. We should note that the directions of the velocities in equation (4.3) 
do not affect the fields. There is one set of equations of  motion for each 
particle, and the system is the usual set of difference-differential equations. 
Only three out of the four equations in each set are independent, and the 
fourth one relates the change in mechanical energy to the work done by the 
Lorentz force. In three-vector notation, equations (4.1) reduce to 

dp f fd t i  = e i ( E ~  + vi A B R )  (4.5) 

dpoi/clt  i = eiEi R " v i (4.6) 

where 

Pi = miVi( ] -- Vi2) -1/2 (4.7) 

POi = mi(1 -- Vi2) -1/2 (4.8) 

vi = d~i/dt i  (4.9) 

A part of the terms in the sum in equation (4.2) can be grouped in an exter- 
nal electromagnetic field, which is given and comes from particles not explicitly 
included in the system. 

There is no macroscopic restriction on the interaction between antiparticles 
or between particles and antiparticles. We thus can invoke the symmetry under 
time reflection found in Sections 2 and 3 to postulate that the advanced fields 
from particles and antiparticles act on an antiparticle. Thus, the retarded 
fields and retarded proper time in the above equation have to be replaced by 
the advanced ones when the ith world line corresponds to an antiparticle. 

In addition to the equations of motion, we have to specify boundary con- 
ditions. As in nonrelativistic mechanics, we have to give two three-vectors for 
each particle and antiparticle. Following the leads from relativistic quantum 
mechanics, we would specify the position and velocity of particles at the initial 
time and those of antiparticles at the final time, and seek to determine the 
world lines within that interval. The boundaries of the space-time region can 
be generalized to parallel spacelike planes or more general spacelike surfaces. 
But, since the interactions are not instantaneous, we can limit ourselves to the 
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region of interest only if the separations of particles and antiparticles are such 
that interactions are negligible and the world lines outside the region can be 
approximated by straight lines. Otherwise, complete world lines have to be 
determined. There is control over these conditions when we deal with particles 
or antiparticles only, but in the mixed case the dynamics cannot be separated 
from the restrictions on boundary conditions. 

We have not found a variational approach to these equations of  motion for 
the system as a whole. The equations of motion of a relativistic particle in an 
external electromagnetic field can be obtained, for instance, from the Lagran- 
gian 

L = -m(1  - v2) 1/2 - e(A o - v-  A) (4.10) 

and the same can be used for any given particle or antiparticle if the appropri- 
ate Li6nard-Wiechert potentials are used for all other particles and antiparticles, 
assuming their world lines are fixed. A single-particle Hamiltonian can be use- 
ful in a many-times formalism for relativistic quantum mechanics. 

5. Energy-Momentum Balance Considerations 

Conservation of energy and momentum follows from invafiance of closed 
systems under space-time translations when the equations of motion or 
particles and fields can be derived from an action principle. But even in such 
a case, the meaning of the different terms that arise for a system of particles and 
a dynamical electromagnetic field (Rohrlich, t965) is quite obscure. 

In our present theory, we can consider separately the emission and absorp- 
tion of radiation by a particle and the interaction between particles. 

For each particle, the Coulomb energy as defined by the integral of the 
retarded and advanced stress-energy tensors over the light cones is included 
in the mass of the particles. The term corresponding to the flux of this energy 
across the tube around the world line can be integrated to the beginning and 
end of the world line, if any. Creation and annihilation of particles should not be 
expected to be accounted for in classical theories anyway. The particle emits 
radiation that flows with the speed of light and it absorbs the same amount, 
represented by the advanced fields propagating backwards in time. Thus, we 
have a balance of energy and momentum without the need to feed the radia- 
tion from a Schott term or a decreasing mass. We explicitly exclude any inter- 
action energy between the advanced and retarded fields. 

The situation is less clear as far as the energy and momentum of interaction 
are concerned. The electrostatic potential energy of two particles is a function 
of the simultaneous positions, a concept that is difficult to generalize to a 
relativistic treatment, when interactions are retarded. It is straightforward to 
compute the energy-momentum flux across a tube around the world line due 
to a mixed term in the stress-energy tensor, 

t t 1 t 
6)iuv = -Fi~uFi~u -- FiavFia,  + gFi~sFic~g#v (5.1) 



898 EGON MARX 

where Fiuv is the advanced or retarded field at the tube around particle i due to 
all other particles and antiparticles, as given by equation (4.2), and F[u v is the 
advanced or retarded field due to the ith particle. When the radius e of the tube 
tends to zero, the value of the fields Fiuv on the world line can be used, only 
the velocity term in Fiuv contributes, and only the term with e2bu has to be 
kept for the surface element in equation (2.11). We find 

P,=-e, f  ou,od , (5.2) 
rl  

fbr the retarded fields, which is equal to the change in energy and momentum 
of the particle. 

In electrodynamics with retarded fields only, the change in energy and 
momentum of the field is equal and opposite to that of the particles, but in 
the present theory particles and antiparticles give rise to both retarded and 
advanced fields, while only the retarded field acts on the particle and only 
the advanced one on the antiparticle. 

Even in the case of purely retarded interactions energy balance is difficult 
to interpret. When two particles of the same charge and mass are initially 
moving towards each other on a straight line, an analysis of the retarded 
equations of motion with no radiation reaction shows (Huschilt et aL, 
1973) that after the collision the speed of the particles at the same distance 
is greater than before the collision. This is a consequence of the fact that the 
retarded distance between the particles is greater when the particles are 
approaching each other than when they are receding from each other, at 
the same position. Conservation of  energy is maintained when the negative 
energy of the interaction radiation is taken into account. In other words, the 
kinetic energy gained by the particles is supplied by the electromagnetic 
radiation energy due to the particles. The authors conclude from this that the 
radiation reaction should not be dropped from the equations of motion, but 
we think that this explanation does not address the problem of conservation 
of energy. 

Furthermore, the concept of the interaction radiation is obscure in terms 
of the particles that emit it. The radiation emitted by a single particle stays 
between two light cones and can be identified as having been emitted at a 
particular segment of the world line and moving out with the speed of light. 
On the other hand, no such interaction energy originates from given dements 
of two world lines, as the regions between the two sets of light cones inter- 
cepted by a spacelike plane shift as the plane recedes into the future. 

We thus propose to limit the concept of emission and absorption of 
radiation to the fields from single particles, and to consider the interaction 
between particles as an action at a distance. 

6. Concluding Remarks 

We have proposed a way of formulating the electromagnetic interactions 
between classical charged particles that is symmetric under time reflection. 
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Antiparticles are not just particles with the opposite sign of  the charge, but 
they are accelerated by advanced fields instead o f  retarded ones. 

We have generalized the view of  a charged particle in Marx (1975a) to 
include advanced fields. Thus, a charged particle includes the Coulomb fields on 
both the forward and backward light cones, it emits radiation at the usual rate 
when it is accelerated, and it also absorbs precisely the same amount of  radiation 
Consequently, no radiation reaction term is needed in the equations o f  motion 
to  balance the radiation. 

The interaction between charged particles is of  the action-at-a-distance type; 
retarded fields produce a Lorentz force on particles only, and advanced fields 
act on antiparticles. We do not have a conservation of  total energy and momen- 
tum for the system, but we find that this concept is of  dubious value in a relativ- 
istic theory if the balance includes contributions from the fields. 

Since classical theories are of very limited value in their use for elementary 
particles, the real test o f  such a theory lies in its internal consistency and a 
reasonable correspondence with a successful quantum theory. 
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